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Project SummaryProject Summary

Title: Multi-Sensor Snow Data Assimilation
Problem Statement: MODIS, AMSR-E, and GRACE all provide 
observations that are relevant to snow water equivalent mapping  observations that are relevant to snow water equivalent mapping, 
each with significant advantages and disadvantages.
Hypothesis: Global fields of SWE can be produced with greater 
accuracy than previously seen by simultaneously assimilating MODIS accuracy than previously seen by simultaneously assimilating MODIS 
snow cover, AMSR-E SWE radiance data, and GRACE terrestrial 
water storage observations within a sophisticated land surface model. 
Team: Team: 
• NASA/GSFC: Matt Rodell (PI), Ed Kim, Rolf Reichle
• U. Texas: Liang Yang (Co-PI), Yongfei Zhang, Yonghwan Kwon

J h  H ki  B  Z it hik• Johns Hopkins: Ben Zaitchik
Timeline: Beginning year 3
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Soil MoistureSoil Moisture
SWESWE Ice  RainfallIce  Rainfall Snow CoverSnow Cover

VegetationVegetation
RadiationRadiation

Remote Sensing of SnowRemote Sensing of Snow
Aqua: 
MODIS

Terra: 
SWE,SWE, Ice, RainfallIce, Rainfall Snow CoverSnow CoverMODIS, 

AMSR-E
MODIS

MODIS provides 
GRACE

GRACE provides 
changes in total 

MODIS provides 
high resolution 
snow cover data 
but not SWE; changes in total 
water storage, 
which are 
dominated by 

;
AMSR-E 
provides SWE 
data but with dominated by 
SWE at high 
latitudes and 
altitudes, but at 

significant errors 
where snow is 
deep or wet
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Advanced RuleAdvanced Rule--Based MODIS Snow Cover AssimilationBased MODIS Snow Cover Assimilation

Foreward-looking “pull” algorithm
• Assesses MODIS snow cover observation 24-72 hours ahead
• Adjusts temperature to steer the simulation towards the observation

S ( )

• Generates additional snowfall if necessary
• Improves accuracy while minimizing water imbalance
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Zaitchik and Rodell, J. Hydromet., 2009
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GRACE Data AssimilationGRACE Data Assimilation

GRACE water storage, mm
January-December 2003 loop

Model assimilated water storage, mm
January-December 2003 loop

BB

Monthly anomalies Monthly anomalies 
(deviations from the 
2003 mean) of 
terrestrial water 
storage (sum of 
groundwater, soil g ,
moisture, snow, and 
surface water) as an 
equivalent layer of 
water.  Updated from 
Zaitchik, Rodell, and 
R i hl  J  Reichle, J. 
Hydromet., 2008.

From scales useful for water To scales needed for water 
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cycle and climate studies… resources and agricultural 
applications



AMSRAMSR--E Radiance E Radiance AssimilationAssimilation

Atmospheric Forcing

CLM4
Snow physical model
(Density, Grain size,

Thickness temperature

Update 

Observed
AMSR E

Thickness, temperature, 
liquid water content )

AMSR-E
RadianceMicrowave Emissions 

Model of Layered 
Snowpacks (MEMLS)Snowpacks (MEMLS) 

Radiative Transfer  Model 
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Co-Chairs: David Lawrence (NCAR), Zong-Liang Yang (Univ of Texas at Austin)



Multi-layer Snow Model in Community Land Model
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Assessment of CLM4 Snow Output

CLM4 Configuration
- Offline (uncoupled) mode at 0.9° x 1.25° (latitude x longitude).
- Princeton meteorological  forcing fields(Sheffield et al. 2006). g g ( )
- 1948 to 1979 spinup

Evaluation Data:Evaluation Data:
1) MODIS/Terra daily snow cover fraction (Hall et al. 2002: MOD10C2; 0.05o

resolution; northern hemisphere;  2001 to 2010) 
) i l i d i ( ) d2) Interactive Multisensor Snow and Ice Mapping System (IMS) data 

(NOAA/NESDIS/OSDPD/SSD,  2004) (2001-2010)
3) Canadian Meteorological Centre (CMC) daily snow depth (Brown and 
Bransnett, 2010) and  SWE estimates using  the Sturm et al. (2010) snow 
densities (by Bart Forman) (1998-2010).
4) Snowpack Telemetry(SNOTEL) SWE and Cooperative Network  (COOP) 
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4) p y( ) p ( )
snow depth(1999-2010).



Comparison of CLM4 with MODIS SCF Observations

• Global (shown here) and 
regional comparisons indicate 
room for impro ement at room for improvement at 
margins of snowpack  
• Princeton-forced CLM4 tends to 
overestimate snow covered 
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overestimate snow covered 
fraction with generally good 
agreement of phase



Comparison of CLM4 against Canadian 
Meteorological Centre SWE Product

• Large differences in some areas (CMC product should not be considered “truth”)
• Modeled SWE expected to benefit from AMSR E radiance assimilation in shallow 
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• Modeled SWE expected to benefit from AMSR-E radiance assimilation in shallow 
snow areas and from GRACE assimilation in deep snow areas



Comparison of CLM4 Against In Situ Observations 

Metric Units SNOTEL 
(SWE)

COOP 
(Snow depth )

Bias [m] 0.225 0.007

RMSE [m] 0 286 0 200
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RMSE [m] 0.286 0.200

Anomaly R [-] 0.24 0.29



Data Assimilation Research 
Testbed (DART)

• A comprehensive data assimilation software 
environment

Testbed (DART)

environment
• http://www.image.ucar.edu/DAReS/DART

• developed and maintained by Jeff Anderson’s group at NCAR• developed and maintained by Jeff Anderson s group at NCAR

• used by both modelers and observational scientists to easily 
explore different data assimilation methods, observations, and 
modelsmodels

• linked to atmospheric models (WRF, CAM4) and oceanic models

• being recently linked to CLM4 (UT and NCAR collaboration)

• Community efforts for data assimilation
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Monthly Ensemble Mean SWE

November 2002
Posterior-Prior on Nov  Posterior Prior on Nov. 
30th ,2002
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Zhang et al., 2011, AGU Fall Meeting
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BACKUP SLIDESBACKUP SLIDES
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Comparison against MODIS SCF 
Ob iObservations

b) Categorical analysis) g y
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Comparison against IMS Product
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Community Land Model
• Evolved from CLM3 5 (released in 2008)  CLM3 5 • Evolved from CLM3.5 (released in 2008). CLM3.5 

improves over CLM3 (released in 2004)
 Surface runoff (Yang and Niu, 2003; Niu, Yang et al., 2005)
 Groundwater (Niu, Yang, et al., 2007)
 Frozen soil (Niu and Yang, 2006)
 Canopy integration, canopy interception scaling, and pft-dependency 

of the soil stress function
• CLM4 (released in 2010) improves over CLM3 5• CLM4 (released in 2010) improves over CLM3.5

 Prognostic in carbon and nitrogen (CN) as well as vegetation 
phenology; the dynamic global vegetation model is merged with CN

 Transient landcover and land use change capability
 U b  t Urban component
 BVOC component (MEGAN2)
 Dust emissions
 Updated hydrology and ground evaporationUpdated yd o ogy a d g ou d e apo at o
 New density-based snow cover fraction (Niu and Yang, 2007), snow 

burial fraction, snow compaction
 Improved permafrost scheme: organic soils, 50-m depth (5 bedrock 

layers)

1919

layers)
 Conserving global energy by separating river discharge into liquid 

and ice water streams 
Co-Chairs: David Lawrence (NCAR), Zong-Liang Yang (Univ of Texas at Austin, 2008-2013)



Comparison against CMC 
ProductProduct

a) Snow depth 
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